Abstract

The efficacy of agents that alkylate the O-6 position of guanine is inhibited by O6-alkylguanine-DNA alkyltransferase (AGT) which removes these lesions from the tumor DNA. To increase differential toxicity, inhibitors must selectively deplete AGT in tumors, while sparing normal tissues where this protein serves a protective function. A newly synthesized prodrug of the AGT inhibitor O6-benzylguanine (O6-BG) with an α,α-dimethyl-4-nitrobenzyloxycarbonyl moiety masking the essential 2-amino group has demonstrated the feasibility of targeting hypoxic regions that are unique to solid tumors, for drug delivery. However, these modifications resulted in greatly decreased solubility. Recently, new potent global AGT inhibitors with improved formulatability such as O6-[(3-aminomethyl)benzylguanine (1) have been developed. However, acetylamino (N-(3-(((2-amino-9H-purin-6-yl)oxy)methyl)benzyl)acetamide) (2) exhibits a pronounced decrease in activity. Thus, 1 would be inactivated by N-acetylation and probably N-glucuronidation. To combat potential conjugational inactivation while retaining favorable solubility, we synthesized 6-((3-((dimethylamino)methyl)benzyl)oxy)-9H-purin-2-amine (3) in which the 3-aminomethyl moiety is protected by methylation; and to impart tumor selectivity we synthesized 2-(4-nitrophenyl)propan-2-yl(6-((3-((dimethylamino)methyl)benzyl)oxy)-9H-purin-2-yl)carbamate (7), a hypoxia targeted prodrug of 3 utilizing an α,α-dimethyl-4-nitrobenzyloxycarbonyl moiety. Consistent with this design, 7 demonstrates both hypoxia selective conversion by EMT6 cells of 7 to 3 and hypoxic sensitization of AGT containing DU145 cells to the cytotoxic actions of laromustine, while exhibiting improved solubility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.