Abstract

Controlling and reducing the formation of pathogenic biofilm on tooth surface is the key to the prevention and treatment of the biofilm-associated oral diseases. Antimicrobial peptides (AMPs), considered as possible future alternatives for conventional antibiotics, have been extensively studied for the control of bacterial infection. Due to the rapid dilution and degradation by human saliva, AMP preparations designed for oral use with longer retention and higher efficacy are in urgent need. To this end, a hydroxyapatite (HAp)-binding antimicrobial peptide (HBAMP), which is based on the fusion of a specific HAp-binding heptapeptide (HBP7) domain and a broad-spectrum antimicrobial peptide (KSLW) domain, has been developed in our laboratory. HBAMP was supposed to form a contact-active antibacterial interface on tooth surface to inhibit the formation of biofilms. In this study, we investigated its binding behaviour, antibacterial activity against bacteria in both planktonic and sessile states, enzymatic stability in human saliva, and cytocompatibility to human gingival fibroblasts (HGFs). Our findings suggest that HBAMP could adsorb on tooth surface to provide effective antibacterial activity with improved retention. This study provides a proof-of-concept on using conjugated molecules to promote antibacterial efficacy by synergistically actions of HBAMP free in solution and bound on tooth surface.

Highlights

  • Of antimicrobial peptides much lower than the effective concentration following saliva dilution and degradation

  • HAp-binding antimicrobial peptide (HBAMP) and KSLW were conjugated with fluorescein (FITC) to permit direct visualization of the peptides immobilized on HAp disk surface by using CLSM

  • Current study reports a novel molecular bioconjugate, i.e., HBAMP, consisting of a broad-spectrum antimicrobial peptide and a HAp-binding heptapeptide domain. It represents a technical advance in the field of oral biofilm control with three important merits: 1, it improves the retention of antimicrobial agents for oral use by adhering to HAp surfaces without losing its antibacterial activity; 2, it can form a contact-active antibacterial barrier on tooth surface to inhibit the formation of biofilms; 3, HBAMP free in solution and bound on HAp surface could act synergistically to reduce biofilm viability (Fig. 7), preventing the biofilm-associated oral diseases

Read more

Summary

Introduction

Of antimicrobial peptides much lower than the effective concentration following saliva dilution and degradation. Conjugated molecules, consisting of antimicrobial and hexapeptidic Ti-binding peptides, have been shown to adsorb to Ti surface and reduce biofilm formation[15]. KSLW (KKVVFWVKFK) is a synthetic antimicrobial peptide reported by DeLuca PP et al.[16] This synthetic peptide shows a broad range of antimicrobial activity against a number of oral pathogenic bacteria, including S. mutans, S. sobrinus and L. acidophilus[16,17,18]. HAp-binding peptide (HBP7, NNHYLPR), isolated by bio-panning phage display random heptapeptide library, has exhibited specific affinity to enamel surface, making it a suitable molecule for tethering AMPs onto enamel surface[20]. The purpose of this study was to investigate the binding behaviour of HBAMP to the HAp surface that served as tooth enamel analogue, as well as the antibacterial activity of HBAMP on planktonic bacteria and its effect on S. mutans biofilm. We investigated its enzymatic stability in human saliva and cytotoxicity on human gingival fibroblasts (HGFs)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.