Abstract

A hybrid proportional electromagnetic dynamic vibration absorber consisting of an electromagnetic actuator and an elastic element is proposed for control of engine vibration during idling. The design of the proportional electromagnetic actuator is realized considering the geometric parameters of the core to achieve nearly constant magnetic force over a broad range of its dynamic displacement but proportional to square of the current. The dynamic characteristics of the electromagnetic dynamic vibration absorber are analyzed analytically and experimentally. The effects of various geometric parameters of the actuator such as the slopes and width/height, and the air gaps on the resulting magnetic force characteristics are evaluated using a finite element model and verified experimentally. A methodology is proposed to achieve magnetic force proportional to current and consistent with the disturbance frequency. The hybrid proportional electromagnetic dynamic vibration absorber is subsequently applied to a single-degree-of-freedom primary system with an acceleration feedback control algorithm for attenuation of primary system vibration in a frequency band around the typical idling vibration frequencies. The effectiveness of the hybrid proportional electromagnetic dynamic vibration absorber is evaluated through simulations and laboratory experiments under harmonic excitations in the 20–30 Hz frequency range. Both the simulation and measurements show that the hybrid proportional electromagnetic dynamic vibration absorber can yield effective attenuation of periodic idling vibration in the frequency range considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.