Abstract

In this paper, a novel hybrid optical image stabilization (OIS) actuator for digital camcorder is proposed. Image stabilization for this hybrid type consists of both radially and tangentially moving components to compensate for hand trembling. The proposed OIS actuator, which uses a voice coil motor method, is divided into two parts: a structure and a magnetic circuit. For the structural part, the driving mechanism consists of two systems: one system is based on a ball guide with a magnetic spring, and the other system is based on a pivot bearing. The former system is typically used as a driving mechanism in mobile devices, whereas the latter system has advantages such as mechanical stability and reduced friction. Overall, a magnetic spring between the magnet and yoke should be considered to select the best magnetic circuit part design and mechanism design. Regarding the electro-magnetic (EM) circuit, two types of EM circuits were designed to satisfy each direction: one circuit is a moving magnet circuit for the radial direction, and the other circuit is a moving coil for the tangential direction. In a digital camcorder, the space for the OIS actuator is limited, and thus, optimized actuator with adequate performances is required. To solve these problems, a sensitivity analysis was performed using the design of experiment procedure. Based on these results, an objective function was defined for the optimization procedure. Finally, the actuator was fabricated, and the dynamic characteristics and feasibility of adapting two types of mechanisms of the suggested OIS actuator were verified. The experimental results indicate that the proposed OIS actuator exhibits sufficient performance for the sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.