Abstract

A high-sensitivity differential Helmholtz photoacoustic cell based on multiple reflection was reported, and its performance parameters and gas replacement time were optimized by finite element simulation. To realize the long absorption path of the measured gas, the collimated excitation light was reflected multiple times on the gold-plated wall of the absorption cavity, and the wavelength modulation technology was used to reduce the multiple reflection noise. Additionally, the differential could suppress external co-phase noise and double the photoacoustic signal. When a laser with a central wavelength of 1653 nm was employed as the excitation light source, the minimum detection limit of 177 ppb (signal-to-noise ratio, SNR = 1) for methane was achieved within a detection time of 1 s, and the corresponding normalized noise equivalent absorption coefficient was 4.1×10-10 cm-1WHZ-1/2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call