Abstract
Integrated optical nanotweezers offer a novel paradigm for optical trapping, as their ability to confine light at the nanoscale leads to extremely high gradient forces. To date, nanotweezers have been realized either as photonic crystal or as plasmonic nanocavities. Here, we propose a nanotweezer device based on a hybrid photonic/plasmonic cavity with the goal of achieving a very high quality factor-to-mode volume (Q/V) ratio. The structure includes a 1D photonic crystal dielectric cavity vertically coupled to a bowtie nanoantenna. A very high Q/V ~ 107 (λ/n)−3 with a resonance transmission T = 29 % at λ R = 1381.1 nm has been calculated by 3D finite element method, affording strong light–matter interaction and making the hybrid cavity suitable for optical trapping. A maximum optical force F = −4.4 pN, high values of stability S = 30 and optical stiffness k = 90 pN/nm W have been obtained with an input power P in = 1 mW, for a polystyrene nanoparticle with a diameter of 40 nm. This performance confirms the high efficiency of the optical nanotweezer and its potential for trapping living matter at the nanoscale, such as viruses, proteins and small bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.