Abstract

An analog baseband circuit of high linearity and high gain accuracy for a digital audio broadcasting receiver is implemented in a 0.18-μm RFCMOS process. The circuit comprises a 3rd-order active-RC complex filter (CF) and a programmable gain amplifier (PGA). An automatic tuning circuit is also designed to tune the CF's pass band. Instead of the class-A fully differential operational amplifier (FDOPA) adopted in the conventional CF and PGA design, a class-AB FDOPA is specially employed in this circuit to achieve a higher linearity and gain accuracy for its large current swing capability with lower static current consumption. In the PGA circuit, a novel DC offset cancellation technique based on the MOS resistor is introduced to reduce the settling time significantly. A reformative switching network is proposed, which can eliminate the switch resistor's influence on the gain accuracy of the PGA.The measurement result shows the gain range of the circuit is 10–50 dB with a 1-dB step size, and the gain accuracy is less than ±0.3 dB. The OIP3 is 23.3 dBm at the gain of 10 dB. Simulation results show that the settling time is reduced from 100 to 1 ms. The image band rejection is about 40 dB. It only draws 4.5 mA current from a 1.8 V supply voltage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.