Abstract

The electric propulsion drives for the more-electric aircraft need lightweight and high-efficiency power converters. Moreover, a modular approach to the construction of the drive ensures reduced costs, reliability, and ease of maintenance. In this article, the design and fabrication procedure of a modular dc-ac three-level t-type single phase-leg power electronics building block (PEBB) rated for 100-kW, 1-kV dc-link is reported for the first time. A hybrid switch (HyS) consisting of a silicon insulatedgate bipolar junction transistor (IGBT) and silicon carbide metal-oxide-semiconductor field-effect transistor (MOSFET) was used as an active device to enable high switching frequencies at high power. The topology and semiconductor selection were based on a model-based design tool for achieving high conversion efficiency and lightweight. Due to the unavailability of commercial three-level t-type power modules, a printed circuit board (PCB) and off-the-shelf discrete semiconductor-based highpower switch was designed for the neutral-point clamping. Also, a nontrivial aluminum-based multilayer laminated bus bar was designed to facilitate the low-inductance interconnection of the selected active devices and the capacitor bank. The measured inductance indicated symmetry of both current commutation loops in the bus bar and value in the range of 28-29 nH. The specific power and volumetric power density of the block were estimated to be 27.7 kW/kg and 308.61 W/in <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> , respectively. The continuous operation of the block was demonstrated at 48 kVA. The efficiency of the block was measured to be 98.2%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call