Abstract
Porcine circovirus type 2 (PCV2) is a pervasive pathogen in the swine industry, leading to a spectrum of disorders known as porcine circovirus associated diseases (PCVAD). The PCV2 Cap protein contains critical antigenic epitopes and is the primary target for vaccine development. Current vaccines include inactivated viral particles and virus-like particles (VLPs), with experimental vaccines exploring various innovative approaches. This study introduces a novel Golden Gate assembly-based, Escherichia coli expression destination plasmid, pPRSVCP-E18, designed for the in-frame insertion of short peptide-coding DNA sequences into a highly antigenic site of Papaya ringspot virus (PRSV) coat protein (CP). We successfully cloned four PCV2 Cap peptides into this plasmid, expressed the chimeric CP proteins in E. coli under flask and bioreactor conditions, and assembled them into VLPs. These VLPs, when adjuvated and administered to BALB/c mice, elicited a specific IgG response against the PCV2 Cap peptides. Our findings demonstrate the plasmid's high efficiency for Golden Gate cloning and its potential in developing subunit vaccines against PCV2, contributing to the sustainable control of PCVAD in the swine industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.