Abstract

In this paper, we design a free-form off-axis three-mirror optical system with a low f-number and compact structure, which can be used as an infrared reflection imager. The initial structure is calculated from the near-axis optical transfer matrix based on third-order aberration theory. Particular constraints are designed to install all mirrors on the same substrate for simultaneous milling, which reduces the processing difficulty and effectively avoids errors caused by component assembly. Zernike free-form surfaces are introduced to correct aberrations. This optical system has a field of view of 5∘×5∘ and an f-number of 1.82; the modulation transfer function of the system is higher than 0.6 at 30 lp/mm. The results of the tolerance assignment of the system were verified by the Monte Carlo method, and the machining tolerance is reasonable and easy to achieve. This design not only improves the optical performance of the system but also enhances the feasibility of manufacturing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.