Abstract

Mosquito traps offer researchers and health officials a reasonable estimate of mosquito abundances to assess the spatial and temporal occurrences of mosquito-transmitted pathogens. Existing traps, however, have issued efficient design to detect mosquito and energy consumption of the device. We designed a novel mosquito collection device that sensitively detects the presence of a mosquito via a fiber-optic sensor. In this prototype, a pushing capture mechanism selectively powers and efficiently captures live mosquitoes without destroying identifying morphological features of the specimens. Because the trap sensor selectively powers the capture mechanism, it allows for greatly reduced power consumption when compared with existing continuously operated devices. With appropriate programming, the fans ON and OFF based on the triggering of a fiber-optic sensor detected and counted each mosquito that entered the trap. This trapping platform can be used with a variety of power sources including renewable sources (e.g., solar, wind, or hydroelectric power) in remote settings. The experimental results show a high success ratio 93%-100% for detection of live mosquitoes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.