Abstract

Bl factor is a key system parameter of the resonant blood viscoelastic sensor. In this paper, a dynamic measurement system for the spatial distribution of Bl factor based on velocity amplitude and motional impedance was designed. The system extracted the velocity amplitude and motional impedance of the coil under the dynamic condition of driving the sensor to generate simple harmonic oscillations using laser displacement and impedance analysis combined with in-phase/quadrature demodulation algorithm, and controlled the equilibrium position of the coil by adjusting the direct current component of the excitation current to realize the position scanning. In the position interval of [-240, 240] μm, the maximum coefficient of variation of the measurement results was 0.077 3%, and the maximum relative error to the simulation results was 2.937 9%, with a linear fitting correlation coefficient R 2 = 0.996 8. The system can be used to accurately measure the spatial distribution of Bl factor of the resonant blood viscoelastic sensor, which provides a technical support for the verification of the design of the sensor magnetic circuit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call