Abstract

Proper characterization of a dust suppressant represents a significant challenge. There has been confusion on what makes an effective dust suppressant. Many have argued that a dust suppressant must wet the material effectively and rapidly to control airborne dust. As a result, dust suppression studies have been heavily dependent upon laboratory wetting experiments such as contact angles, fine particle engulfment rates, and particle bed experiments to characterize dust suppressants. It has been believed that an effective dust suppressant should produce a low contact angle, and engulf particles rapidly thereby wetting the surface effectively and reducing airborne dust levels. However, these methods only characterize how the suppressant wets a given material, which does not directly correlate to the ability to suppress dust. Furthermore, a clear correlation between wetting enhancement and dust suppression has not been demonstrated. In order to address this gap, a novel dust tower was constructed which provided direct material dustiness measurements and allowed for a more realistic evaluation of dust suppressant effectiveness. This unit was able to clearly distinguish differences in dustiness that resulted from treatment of iron ore pellets with several different dust suppressant chemicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.