Abstract

This paper proposes a design of dual scattering angles multi-path Thomson scattering system with a signal separation function to solve the overlapping phenomenon of scattered light signals and to increase the measurement accuracy for the investigation of anisotropic electron velocity distribution. Furthermore, an optical path design is proposed to demonstrate how overlapping scattered light signals can be separated by setting the optical path in a limited room with a compact layout, which makes the incident interval between two overlapping scattered light signals 1.7 times longer than that of our current system. The specific position of each optical component existing in the system is determined via a Gaussian beam analysis to avoid damage caused by overexpansion of spot size with the application of two cooperating image relay systems. Conversely, a polychromator is optimized by resetting the pass waveband of the interference filter combination to achieve high accuracy in electron temperature (Te) measurement corresponding to two scattering angles simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.