Abstract

This paper proposes a dual-polarization dipole antenna for a cylindrical phased array working in Ku-band. The dipole antenna is double-layer structured and is composed of two orthogonal butterfly shaped dipole radiators, two ground co-planar waveguide (GCPW) feeding structures and vias. Each dipole is in the shape of a butterfly. The dipole patch is grooved triangularly and one side of it is bent into an N shape, which effectively expands the working frequency band of the antenna. The double-layer structure improves the isolation between the antenna ports. The antenna works between 15 GHz to 16.2 GHz and the isolation between the antenna’s two feeding ports in this band is better than 20 dB. The proposed dipole antenna is applied in a 32-element cylinder array. The simulation and measured results show that the array can scan between −60° to +60° in the azimuth plane with a gain fluctuation less than 2.5 dB. Therefore, the proposed design is an attractive candidate for conformal devices at Ku-band frequencies, and it also has a great potential for application in larger antenna arrays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.