Abstract

The development of additive manufacturing technology has facilitated the production of cellular structures such as lattices. Topology optimization is a tool for computing the optimal geometry of an object within certain conditions, and it can be used to increase the stiffness and decrease the weight. In this study, a “double-optimized lattice structure” was designed by applying the solid isotropic material with penalization method for topology optimization twice, first to optimize the unit cell of the lattice and then to grade and insert the cells into a global model. This design was applied to a Messerschmitt–Bölkow–Blohm beam and produced via material extrusion additive manufacturing. Subsequently, it was evaluated by a three-point bending test, and the results indicated that the double-optimized lattice beam had a 1.6–1.9 fold greater effective stiffness and a 2 fold higher ultimate load than the values obtained for the beam designed with conventional methods. Thus, the double-optimized lattice structure developed herein can be an effective material with regard to its low weight and high stiffness. Contrarily, the penalty factor p of the solid isotropic material with penalization did not affect the properties. This finding suggests that p can control homogeneity while maintaining the strength of the structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.