Abstract

This paper proposes a novel fuzzy mathematical model for a distribution network design problem in a multi-product, multi-period, multi-echelon, multi-plant, multi-retailer, multi-mode of transportation green supply chain system. The three purposes of the model are to minimise total network cost, maximise net profit per capita for each human resource, and diminish CO2 emission throughout the network. P-hub median location with multiple allocations is used for locating the distribution centres. One scenario is designed for fuzzy customer demands with a trapezoidal membership function. Furthermore, the model determines the design of the network (selecting the optimum numbers, locations of plants, and distribution centres to open), finding the best strategy for material transportation through the network with the availability of different transportation modes, the capacities level of the facilities (plants or distribution centres (DCs)), and the number of outsourced products. Finally, all uncertain customer demands for all product types can be satisfied based on the methods mentioned above. This multi-objective mixed-integer non-linear mathematical model is solved by NSGA-II, MOPSO and a hybrid meta-heuristic algorithm. The results show that NSGA-II is the exclusive algorithm that obtains the best result according to the evaluation criteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call