Abstract
A data-driven proportional-integral-derivative (DD-PID) controller has been proposed as an effective controller for nonlinear systems. The DD-PID controller can tune the PID parameters adaptively at each equilibrium point. In order to train the PID parameters in a database, an offline learning algorithm based on a fictitious reference iterative tuning (FRIT) method was established. This method can compute the PID parameters by using a set of operating data. However, the FRIT method is a control parameter tuning method that is only based on the minimization of the system output in its criterion; therefore, the criterion is insufficient for systems in which the stability of a closed-loop system is important such as chemical process systems because sometimes the sensitivity of an obtained controller becomes high. In order to solve this problem, an extended FRIT (E-FRIT) method that penalizes the input variation in its criterion has been proposed. In this method, the PID parameters that are taken into stability can be calculated. The effectiveness of the proposed method is evaluated by an experimental result of a spiral heat exchanger.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.