Abstract
This paper presents an initial experimental and computational investigation of a flow-induced vibration energy harvester with a compliant flexure mechanism. This energy harvester utilizes the aeroelastic flutter phenomenon to convert the flow energy to vibrational energy which can be converted into useful electrical power using piezoelectric transducers. However, unlike previous flutter-based flow energy harvesters [1] which require assembling multiple components to create the necessary aeroelastic arrangement, the device described here utilizes a monolithic, compact design to achieve the same. In this paper, we propose a flexure design for this device and model it using analytic methods and finite element simulations. A proof of concept energy harvester incorporating this flexure design has been fabricated and experimentally investigated in wind tunnel testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.