Abstract

In this paper we present the initial design of a novel and versatile high frequency gyrotron with parameters suitable for application to various spectroscopic studies that require coherent radiation in the subterahertz frequency range (such as NMR/DNP spectroscopy, ESR spectroscopy, spectrometer based on the X-ray detected magnetic resonance etc.). The most characteristic feature of the design is that it utilises a compact, cryogen-free 8 T superconducting magnet. As a result, the overall dimensions of the entire device are considerably reduced in comparison with the previously developed tubes belonging to the Gyrotron FU and Gyrotron FU CW series. This makes the novel gyrotron highly portable to diverse laboratory environments and easily embeddable to different measuring systems. The electron-optical system (EOS) of the tube is based on a compact low-voltage magnetron injection gun (MIG), which has been specially designed and optimized together with the resonant cavity using our problem-oriented software package GYROSIM for CAD of gyrotrons. The tube operates at the second harmonic of the cyclotron frequency and generates a radiation with an output power of about 100 W and a frequency tunable up to around 424 GHz, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call