Abstract
SUMMARYThis paper addresses the conceptual design of direct-drive manipulators which have good promise for high speed, high precision manipulation. In the design methodology presented, the procedure begins by considering the kinematic aspects and ends by configuring manipulator structures with promising kinematic and dynamic characteristics. Based on the conceptual design considerations, a novel 3 DOF (RRR) direct-drive manipulator is proposed and analyzed. The manipulator structure has only five links and a compact configuration. Manipulator kinematics and dynamics are analyzed. Design guidelines are derived for static balancing of the manipulator and for minimizing the inertias driven by the motors. Operational configurations that either improve or worsen the kinematic and dynamic behaviour or characteristics of the manipulator are identified. The proposed design has an advantage over many currently known direct-drive manipulators for achieving two desirable mechanical features, namely: static balancing and compactness (smaller driven inertias).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.