Abstract

This paper presents a compact textile antenna design based on a metasurface for wearable applications. It operates in the 2.45 GHz and 5.5 GHz industrial, scientific, and medical bands. A two-dimensional equivalent circuit model is proposed to provide insight into the working principle of the metasurface. The tuning of the radiator's resonant frequencies can be easily performed by adjusting the dispersion curve of the metasurface unit cell. The metasurface in this work consists of a 4 × 4 array of unit cells fed by a printed coplanar waveguide structure with a slot in its reverse side to maintain its low profile structure. The main innovations of this work are: (i) the -2nd mode is employed to significantly miniaturize the antenna dimensions; (ii) the simultaneous excitation of the +1st mode to enable dual-band operation; (iii) an integrated back reflector to reduce back radiation and lower SAR; and (iv) the use of full textile materials to guarantee user comfort, ease of fabrication and low cost. The proposed antenna's footprint is 44.1 × 44.1 mm2 (0.12 λ2 at 2.45 GHz), with an impedance bandwidth of 10.2% centered at 2.45 GHz and 22.5% at 5.5 GHz. The maximum gain is -0.67 dBi and 7.4 dBi in free space, and 9% of power gain attenuation is generated when used on the body, and is suitable as a miniaturized antenna for wearable applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call