Abstract

In this paper, we present and numerically investigate a new and simple design of Circular Lattice Photonic Crystal Fiber (CL-PCF) with near zero ultra-flattened chromatic dispersion. The near zero dispersion is obtained by introducing a defect into the solid core and the dispersion flatness is achieved by appropriately reducing the diameter of the core-neighboring air holes ring. Simulations are performed by using the finite-difference frequency-domain (FDFD) method combined with the perfectly matched layer (PML) boundary condition. Results show that an ultra-flattened chromatic dispersion as small as ±0.66ps/nmkm is obtained over a broad band of 400nm with high nonlinearity and ultra-low confinement loss. Furthermore, the supercontinuum (SC) generation over a short length of the proposed CL-PCF is numerically investigated. Results indicate that flat SC spectrum with a Full Width at Half Maximum (FWHM) of 600nm is achieved with 25cm of fiber length.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call