Abstract

From the laboratory experiments and field studies it has been shown that when a wave breaks directly on a vertical wall, impact pressures of high magnitude and short duration, are produced. Despite the recent advances made in collecting data on impact pressure histories and their spatial distributions, analyses on the structural behaviour of the walls loaded by the impact forces do not seem adequate. In the present study the theoretical analysis of the response characteristics of a caisson plate, having different aspect ratios, under the wave impact loading is investigated. Numerical results for the dynamic values of moments and transverse displacements are obtained by the method of finite elements. Some prerequisite experimental data for wave breaking and resulting impact pressures are provided. The static results for moments and deflections are also computed for comparing them with the dynamic values. The dynamic results are found significantly greater than the static values. The ratio between the dynamic and static values is called “Dynamic magnification factor” that varies with plate aspect ratio. Based on this factor a procedure is proposed which may have practical consequences in the design of caisson plates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.