Abstract

Ochratoxin A (OTA) is considered the most toxic member of the ochratoxin group. Herein, a novel label-free electrochemical sensor based on the horseradish peroxidase (HRP) enzyme is developed for OTA detection. The HRP enzyme was covalently immobilized on the working electrode of a planar boron-doped diamond (BDD) electrochemical microcell previously covered with diazonium film and grafted with single-walled carbon nanotubes (SWCNTs). Each surface modification step was evaluated by cyclic voltammetry and scanning electron microscopy. Square wave voltammetry was used for the detection of OTA. The linear working range of the biosensors ranged between 10−14 and 0.1 M, with a limit of detection (LOD) of 10 fM, an RSD equal to 5%, and a sensitivity of 0.8 µA per decade. In addition, the sensor showed good selectivity in the presence of OTA analogs; it was validated in samples such as corn, feed, and wheat. The metrological performance of the present sensor makes it a good alternative for OTA detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.