Abstract

As the number of wind power applications with power electronic interfaces in the grid increases, it is becoming unacceptable to disconnect the generating units every time disturbances occur, especially under voltage dips, as was a common practice in the past. Keeping the converter online during unbalanced voltage, and guaranteeing the actual standards of the converter connected to the grid, is becoming a very critical issue. From these goals, the design of a robust back-to-back neutral point clamped (three levels) voltage source converter of 150 kVA is developed in this paper. The converter is divided into two main parts: the power electronic system and the control electronic system. Concerning the first part, on the one hand, the paper presents the designs of active and passive components as insulated gate bipolar transistor, free-wheeling diodes, clamping diodes, grid filter, DC-bus capacitors, etc.; and on the other hand, the converter requirements are analyzed to ride through real grid conditions, i.e., unbalanced voltage dips. Concerning the control electronic system, the chosen electronic structure and the task distribution between the two processors used are shown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call