Abstract
A 12-32 GHz divide-by-2 (D2) injection-locked frequency divider (ILFD) is presented in this paper. First, the device ratio of the injection mixer and cross-coupled pair is optimized to achieve a wide locking range (LR). Then, the inductive peaking and forward-body-bias techniques are applied to the injection mixer to boost its transconductance and to enhance injection efficiency for further extension of the LR. Finally, the harmonic suppression technique is introduced to reduce the output harmonics. Using the aforementioned approaches, we successfully demonstrate a D2 ILFD implemented in the 90-nm low-power CMOS technology with a maximum LR of 90.9% at an injection power of 0 dBm. Even with the injection power as low as -10 dBm, the proposed ILFD maintains an LR of 32.9%. This ILFD consumes 2.4 mW with a supply voltage of 0.6 V in a chip size of 0.45 mm 2 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.