Abstract
In this paper, we present the new personalized 3D printed soft robotic hand for providing rehabilitation training and daily activities assistance to stroke survivors. The Soft-Elastic Composite Actuator (SECA) on the robotic hand is direct 3D printed to accommodate with different finger sizes. Flexion and extension can be actively facilitated on the SECA using the same pressurizing source. Iterative learning model predictive control (ILMPC) method is used to be the control algorithm of SECA. At 160 kPa of maximum input pressure, results show that the actuator bending angles can reach to 137 °, and tip output force can also reach to 2.45 N. Multiple 3D printed SECAs are integrated to a 3D printed hand base and then to be worn on stroke survivors. Two stroke survivors are recruited to evaluate the intention-based rehabilitation training with the 3D printed soft robotic hand, which improvement of their hand function can be observed on performing some daily tasks such as grasping a coin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE ... International Conference on Rehabilitation Robotics : [proceedings]
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.