Abstract

This paper examines the design of a 32-b GaAs Fast RISC microprocessor (F-RISC/I). F-RISC/I is a single chip GaAs Heterojunction MESFET (HMESFET) processor targeted for implementation on a multichip module (MCM) together with cache memories. The CPU architecture, circuit design. Implementation, and testing are optimized for a seven-stage instruction pipeline implemented with GaAs super-buffered FET logic (SBFL). We have been able to verify novel GaAs SBFL standard cells and compare measured CPU performance with performance estimates based on circuit and device models. The prototype 32-b microprocessor has been implemented using an automated standard cell approach because of time constraints and fabricated using an experimental process by Rockwell International. The CPU chip integrates 92340 transistors on a 7/spl times/7 mm/sup 2/ die and dissipates 6.13 W at 180 MHz. Test results from a prototype fabrication run have demonstrated the operation of the ALU, the program counter, and the register file with delays below 6, 5, and 3.4 ns, respectively. The successful modeling and verification indicate that a 0.5 /spl mu/m HMESFET implementation of F-RISC/I could achieve a peak performance of 350 MHz. The wiring delays account for 42% of the critical path delay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.