Abstract
In this work, the design and development of a 128-channel transceiver hardware for medical ultrasound imaging systems and research is presented. The proposed hardware solution integrates the analog front-end (AFE) sections, high voltage transmit pulser sections, field programmable gate array (FPGA)-based transmit beamforming and control logic, time gain compensation (TGC) and continuous (CW) Doppler functional circuits, and the necessary power supplies (high voltage (HV) and low voltage (LV)) into a single board. In addition, it integrates pervasive segments like power, clock tree sections, and power management and debugger logic. The developed transceiver solution helps to advance the research in medical ultrasound imaging techniques and technologies. To prototype an ultrasound imaging system, the developed hardware can be interfaced with a 128-channel ultrasound transducer array and an FPGA-based signal processing module. As the transceiver hardware is designed with commercially available chipsets, it provides the flexibility to programme the ultrasound AFE signal chain, transmit beamforming and the arbitrary transmit wave pattern. Besides, compared to the commercial open ultrasound research scanners, the flexibility to interface FPGA-based signal processing module helps to investigate the performance of hardware realisation of various ultrasound signal processing algorithms. Moreover, the work realises a single-board transceiver solution for multichannel ultrasound system fulfilment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IET Circuits, Devices & Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.