Abstract
Based on the shock absorber size and power and power density limitations in motorcycle application, a linear permanent magnet machine for a regenerative suspension system that recovers the kinetic energy originating from shock absorber vibration is investigated. To achieve the target power of 120 W, several design parameters were investigated. The eight-slot eight-pole combination was used due to its high power density. A hybrid permanent magnet structure was implemented which was a combination of a classical Halbach array and iron spacers. In addition, the dimensions of the permanent magnet, and stator inner radius were parametrically studied to enhance the air-gap flux density and coil volume, which are the main factors affecting performance. The detailed design generated 124 W of average power under the rated condition, assuming a vibration speed of 0.157 m/s. Despite the satisfaction of the output power and power density, the large magnetic force caused by the interaction between the iron core and permanent magnet is the main drawback of this design, which has a negative impact on driving safety and comfort. To commercialize the suggested device, additional studies will focus on size, electromagnetic reduction, as well as road test performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.