Abstract

In this study, a three-phase motor inverter with sinusoidal output voltages based on the application of gallium nitride transistors and advanced control is analysed. In comparison to standard silicon-insulated gate bipolar transistors much higher feasible switching frequencies of 100 kHz and above are possible and reduce the output sine filter component size such that the filter can be directly included into the inverter. This considerably improves the electromagnetic interference (EMI) behaviour of the drive system as well as the acoustic noise, eases the inverter-to-motor wiring and protects the motor isolation against high d u /d t rates. The study describes the dimensioning and design of the used two-stage LC filter including motor current control based on proportional-integral-type phase current controllers. The LC filter damping is performed actively by capacitor current feedback. Using this active damping scheme avoids additional losses of conventional sine filters and guarantees high system efficiency up to 98%. Finally, experimental results of a laboratory prototype verify the proper behaviour of the proposed concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.