Abstract
In this paper, a bidirectional CLLC converter operating at MHz-level switching frequency is proposed to achieve high power density and high efficiency. An optimized stacked printed circuit board winding based planar transformer with adjustable leakage inductance is modeled and designed for the proposed converter. It is enabled using gallium nitride devices to achieve fast switching with low switching losses. A detailed power loss model is established for the efficient thermal design of the converter. A proof-of-concept hardware of 3.3 kW, 400–450 VDC input, 250–420 VDC output CLLC converter with 1 MHz operating frequency is built and tested over a wide range of loading conditions. The power density of the system is 9.22 W/cm3 (151.1 W/in3) and the peak efficiency achieves over 97%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.