Abstract

This letter presents a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$V$ </tex-math></inline-formula> -band low phase noise voltage-controlled oscillator (VCO) design using a novel integrated two-branches defected ground structure (DGS) resonator in 0.18- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> complementary metal-oxide-semiconductor (CMOS) technology. The proposed DGS resonator is realized in the top metal layer (M6) which has not only a higher quality factor than its predecessors but is also effective to reduce the length of interconnects. The measured carrier frequency and phase noise are 49 GHz and −122.05 dBc/Hz (−102.58 dBc/Hz) at 10-MHz (1-MHz) offset frequencies, respectively. The VCO core consumes 5.5 mW of dc power from the dc supply, which results in a figure of merit (FoM) of −189 dBc/Hz. The proposed VCO using the two-branches DGS resonator may give an alternative low-cost solution for designing a high-performance VCO or frequency synthesizer at <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$V$ </tex-math></inline-formula> -band and beyond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.