Abstract

In this Letter, we report a simple approach for the preparation of bioinspired nacre-like structured materials with achievable high in-plane or through-plane thermal conductivity via digital light processing 3D printing under optimized printing parameters. Based on the 3D layer-by-layer formation, a vertical force exerted on each printing layer during the 3D printing process makes 2D platelets well-ordered in ultraviolet curable resin (hereafter UV resin), which is proved by the images of the scanning electron microscope and spectra of x-ray diffraction. It is found that a lower printing layer thickness leads to a higher orientation of Al2O3 platelets in the UV resin and greater thermal conductivity of the composites. The thermal conductivity of the structured composites reaches up to 2.622 W m−1 K−1 along the oriented direction at the loading of 30 wt. % of 2D Al2O3 platelets under the designed 3D printing layer thickness of 15 μm, which is about 14 times greater than that of pure UV resin. The surface temperature variations of the composites with time during heating and cooling, observed from the infrared thermograph, indicate the great potential of the 3D-printed structured materials for thermal management applications in electronic devices and electric equipment. It is predicted that fillers with greater intrinsic thermal conductivity and a larger diameter than the 3D printing layer thickness will lead to composites with greater thermal dissipation capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call