Abstract
Flexible power sources and efficient energy storage devices with high energy density are highly desired to power a future sustainable community. Theoretically, rechargeable metal–air batteries are promising candidates for the next-generation power sources. The rational design of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts with high catalytic activity is critical to the development of efficient and durable metal–air batteries. Herein, we propose a novel strategy to mass synthesize nonprecious transition-metal-based nitrogen/oxygen codoped carbon nanotubes (CNTs) grown on carbon-nanofiber films (MNO-CNT-CNFFs, M = Fe, Co, Ni) via a facile free-surface electrospinning technique followed by in situ growth carbonization. With a combination of the high catalytic activity of Fe-catalyzed CNTs and the efficient mass-transport characteristics of 3D carbon fiber films, the resultant flexible and robust FeNO-CNT-CNFFs exhibit the highest bifunctional oxygen catalytic activities in t...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.