Abstract

Auxetics have emerged recently as an exciting class of mechanical metamaterials that are identified by negative Poisson’s ratio. The mechanical properties of rationally designed auxetic metamaterials are mostly influenced by their topological characteristics rather than the material properties of their constituent material. The goal of this paper is to use optimization algorithms to achieve the desired target mechanical properties for reentrant auxetic metamaterials. The GEKKO optimization package in Python is used for optimizing the geometry of auxetic lattice structures. Several mechanical properties including Poisson’s ratio, relative Young’s modulus, relative yield stress, and relative energy absorption capability, as well as the noted properties normalized with respect to relative density and relative Young’s modulus are chosen for being minimized or maximized. ANSYS finite element package is also implemented for validation of the results obtained from the optimization algorithm. According to the results, to achieve the maximum magnitude of Poisson’s ratio (positive and negative), the size of the unit cell in the lateral direction must be selected to be maximum and the thickness must become minimum. Moreover, to achieve the maximum value of the relative Young’s modulus or energy absorption in any direction, the size of the unit cell in that direction must be maximized. Also, to achieve the maximum amount of relative yield stress in both directions, the unit cell must have a maximum thickness and an internal angle close to zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call