Abstract

The oil refining process is energy-intensive since every aspect of the process consumes energy. The need to minimize energy consumption when raising steam in boilers using Liquefied Petroleum Gas (LPG) burner was the focus of this study, to proffer techniques for improving optimum thermal efficiency via proper burner design and positioning. Burner design models were utilized to evaluate parameters for optimum combustion, to deliver the expected thermal output, including thermal efficiency. The results of this study suggest that, to design a 22KW LPG burner for an oil refinery boiler, the optimum values estimated for the burner parameters for efficient combustion at a gas flow rate of 1.89x10-4m3/sec, including Wobbe Index (83285.7KJ/m3), size of burner nozzle (1.9 mm), gas supply pressure (0.80 psi), length of burner slot for air entrainment (137.61 mm), size of burner pipe (46.48 mm), total orifice diameter (400.53 mm), and number of 3 mm. Studies elsewhere also suggest that if a proper angle between the burner axis and the boiler surface is achieved, significant changes in the amount of gas used can results positively in the direction of fuel utilization efficiency, thereby saving the cost of steam production in an LPG fired refinery boiler.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call