Abstract

In this study, an annular combustion chamber of a turbojet engine with a net trust of 1650N is designed. Kerosene is considered as fuel in this study. The design consists of evaluation of the reference quantities, calculation of the required dimensions, estimation of air distribution and pressure drop, estimation of the number and diameter of air admission holes, as well as aerodynamic considerations. The design process is accompanied by Computational Fluid Dynamics (CFD) based on RANS simulation. Three-dimensional simulation of the reacting process within the combustion chamber is carried out based on the finite volume method. The RNG turbulent model and the finite rate/eddy dissipation combustion model are considered in the present study. Finally, the (atmospheric test) AT rig of the combustion chamber is explained. The Turbine Inlet Temperature (TIT) of combustion chamber is measured at different operating conditions. The TIT values in the numerical simulation and experimental measurement are 1191.1K and 1227 K, respectively, in the design point. The SN and the angle of the RZ are equal to 0.9955 and 35.26 degree, respectively. The temperature, velocity and pressure fields of RZ, air-fuel mixture, combustion turbulence are then presented in image outputs and graphs. The results indicate that the temperature distribution at the outlet of combustion chamber is relatively uniform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call