Abstract

Abstract Numerous wellbore instability problems have been reported when drilling through laminated shale formations because of anisotropic (weak) strength along bedding layers. The anisotropic strength is defined through the analysis of stress distributions around wellbore and angle of intersection (AOI) between well trajectory and weak bedding plane. This paper presents a method to calibrate a wellbore stability model, design mud weight and control breakout width based on analysis of AOI and anisotropic strength. The proposed method includes four (4) steps as follows: AOI is calculated by using bedding plane data (dip angle and dip azimuth) and well trajectory information (well inclination and azimuth). Based on single plane of weakness theory, the stress distributions around deviated wellbores in laminated shales are analyzed to show that failure can occur either along or across bedding planes depending on AOI. The profile of collapse pressure for both isotropic and anisotropic strength model are calculated along with the AOI. Drilling data (mud weight, cuttings/cavings pictures etc.) combined with azimuthal density image are used to choose and calibrate the wellbore stability model. Lab strength test results with different angle to bedding plane are used to calibrate rock strength model and field data are collected and analyzed to define acceptable breakout width. Field data demonstrates that AOI can have a significant effect on wellbore stability. It is observed that severe borehole problems occurred in hole sections with low AOI (<30°) especially when a low mud weight is used to allow a wider breakout. Minor wellbore instability still occurred in some hole sections with low AOI even when the zero breakout criteria was used for mud weight selection. The instability observed can be attributed to swab – decreased ESDs being exerted on the formation while pulling the bottom-hole-assembly out of the hole and time-dependent effect. The ‘zero breakout width’ criterion is recommended for AOI less than 30°, the ‘(90°-Inclination) breakout width’ criterion for AOI between 30° and 60°, and the ‘(90°-2/3*Inclination) breakout width’ criteria for AOI greater than 60°. If the mud weight window permits, then it would be beneficial to increase the mud weight by an extra 0.2 ppg to cover swab effects in shale formations that have an extremely low AOI (<15°). If not, mechanical means to prevent hydrostatic pressure drops such as slower pipe reciprocation or managed pressure drilling (MPD) need consideration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call