Abstract

Numerous applications of DNA origami nanotubes for load-bearing purposes necessitate the improvement of properties and mechanical behavior of these types of structures, as well as the use of innovative structures such as metamaterials. To this end, the present study aims to investigate the design, molecular dynamics (MD) simulation, and mechanical behavior of DNA origami nanotube structures consisting of honeycomb and re-entrant auxetic cross-sections. The results revealed both structures kept their structural stability. In addition, DNA origami based-nanotube with auxetic cross-section exhibits negative Poisson’s ratio (NPR) under tensile loading. Furthermore, MD simulation results demonstrated that the values of stiffness, specific stiffness, energy absorption, and specific energy absorption in the structure with an auxetic cross-section are higher than that of a honeycomb cross-section, similar to their behavior in macro-scale structures. The finding of this study is to propose re-entrant auxetic structure as the next generation of DNA origami nanotubes. In addition, it can be utilized to aid scientists with the design and fabrication of novel auxetic DNA origami structures. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call