Abstract

This paper presents a modified design for a stamped base for a 2.5-in hard disk drive (HDD). A stamped base is a thinner thickness and lower stiffness than a die-casting base. To improve shock performance of the stamped base, the finite element (FE) model of the HDD is constructed. Then, the FE model was verified by modal analysis. Drop test was performed to confirm the shock simulation model. Parametric analysis was used to identify the key parameters for the shock performance which were the base thickness, rib shape, number of ribs, and reinforcement. The correlation between the relative displacement and natural frequency of the HDD was investigated for each parameter. The dominant parameter was identified and applied to the FE model of the stamped base. The modified stamped-base model was then evaluated under nonoperational shock conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.