Abstract

This paper presents the mechanical design process of an omni-directional mobile robot. In addition, the kinematics equations of the final design are derived, and the inverse Jacobian matrix of the robot is presented. The dynamic equations of motion for the final design are derived in a symbolic form, assuming that no slip occurs on the wheel in the spin direction. In order to validate the kinematics and dynamic equation, we carried out consequences of simulation using two pieces of software, Maple and Working Model. Finally, the mobile robot is moved in given trajectories and the systematic errors of the robot are determined. To overcome the problems, a new method was introduced in which the robot was programmed to move in the direction of each wheel shaft.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.