Abstract

In this paper, a new dye cell for transverse pumping was designed, modeled, and its performance in a narrow spectral width dispersive resonator, pumped by a high repetition rate copper vapor laser, was investigated. The scheme essentially involves the profiling of the cubical glass and stainless steel cylindrical surface such that convex-plano contour be present near the optical pumping region. The design is an amalgamation of straight and curved periphery to enhance the dye solution flow stabilities near the dye laser axis. A computational fluid dynamics analysis of the liquid flow through this dye cell has been carried out. The dye laser outputs such as optical average power, spectral width and wavelength stability, tuning range, pulse shape, through this new dye cell was evaluated. The dye laser average power about 30 mW was fairly steady over the observation period of more than an hour. The dye laser short-term (1 min) spectral width was within 0.824 ± 0.075 GHz, while, in a long-term, more than an hour, drifted by about 180 MHz. The dye laser wavelength in short-term fluctuates within ±0.0065 nm whereas in a long-term, more than an hour, drifted by about 0.0105 nm. The dye laser tuning range was 10 nm with a sub GHz spectral width operation. The pulse shape of the dye laser follows the pump laser pulse profile. Thus, the dye laser has demonstrated fairly long-term stability, without the use of either low expansion material or close loop control on the output.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call