Abstract

A multi-bifurcated cantilever piezoelectric energy harvester (BCPEH) is designed and verified to achieve a wide and adjustable response frequency band. The theoretical model is derived based on the Euler-Bernoulli beam theory and continuity boundary conditions to investigate the dynamic response of the BCPEH. The displacement frequency response function and the voltage frequency response function of the BCPEH are deduced based on the Galerkin method, and the theoretical results of a typical multi-bifurcated cantilever piezoelectric energy harvester, the Y-shaped BCPEH, are verified by the finite element method (FEM) and experiments. In addition, by comparing experimental output power of the Y-shaped BCPEH with that of the traditional cantilever-based piezoelectric energy harvester with the same mass of the bifurcated part at the beam-tip, it demonstrates that the Y-shaped BCPEH has a wider operational frequency band. Moreover, it is found that the Y-shaped BCPEH can be designed with an asymmetric configuration to adjust its response frequency distribution. The number of resonant frequencies and the output power of the asymmetric Y-shaped BCPEH are higher than that of the symmetric Y-shaped BCPEH. And the Y-shaped BCPEH has even better performance than L-shaped BCPEH. This study provides a new design concept for enhanced energy harvester.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.