Abstract

Due to higher input/output (I/O) count and power delivery problem in deep submicrometer (DSM) regime, flip-chip technology, especially for area-array architecture, has provided more opportunities for adoption than traditional peripheral bonding design style in high-performance application-specific integrated circuit and microprocessor designs. However, it is hard to tell which technique can provide better design cost edge in usually concerned perspectives. In this paper, we present a methodology to convert a previous peripheral bonding design to an area-I/O flip-chip design. It is based on an I/O buffer modeling and an I/O planning algorithm to legalize I/O buffer blocks with core placement without sacrificing much of the previous optimization in the original core placement. The experimental results have shown that we have achieved better area and I/O wirelength in area-IO flip-chip configuration (especially for pad-limit designs), compared with peripheral bonding configuration in packaging consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.