Abstract

This study was conducted to obtain a type of aluminum matrix composites exhibiting a good strength and certain ductility at high temperature. The 25 vol% TiO2-75 vol%2024 Al systems were selected to fabricate the (Al3Ti+Al2O3)/2024 Al composites with residual ∼32 vol% Al matrix through powder metallurgy. The (Al3Ti+Al2O3)/2024 Al exhibits a good strength and certain ductility at high temperature as in the design. The microstructure of (Al3Ti+Al2O3)/2024 Al composites was investigated. It was discovered that the in-situ Al3Ti reinforcement was in coarse block-shaped particles of approximately 6.9 μm in size and the Al-Al3Ti interface was clean. The Al2O3 particles were in the nano-scale and distributed in the Al matrix in a cluster form. The high temperature compression testing of the composites was conducted at the temperatures of 573 K, 623 K, 673 K, 723 K and 773 K with the strain rate of 10−3 ∼ 0.42 s−1. The results demonstrated that the composites exhibited higher strength at the same high temperature than the other Al matrix composites with a similar volume fraction. The massive Al3Ti and Al2O3 phases played a load bearing role at high temperatures. The residual ∼32 vol% Al matrix led the composites to acquire certain ductility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.