Abstract

Time-domain equalizers (TEQ) are used in the discrete multitone (DMT) transceivers in order to reduce the duration of the overall response of the transmission system, so that a shorter-length cyclic prefix could be used. The optimum TEQ is the one that results in maximum bit allocation to each block of the DMT. However, the optimum design of TEQs turns out to be a very difficult task. We give the general guidelines that one should follow in the design of TEQ to achieve a good performance. Based on the suggested guidelines, we first propose an eigenapproach design method which results in TEQs with comparable performance to those of a previously reported method, but at a much lower computational cost. Further study of the proposed guidelines reveals that the choice of target-impulse response in the design of TEQ only weakly depends on the channel response. Noting this, we propose a second design method that is even simpler than our first method, but still results in comparable designs to those of our first method and also those obtained from the much more complex methods of the present literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call