Abstract
The design of pillars in cut-and-fill mining and open stoping in vertical and subvertical orebodies is of vital importance in optimizing mining operations. The primary requirement for a good and reliable design technique is the ability to represent the actual physical behaviour of the pillar. In this paper, a new methodology for stope roof and sill pillar design is proposed for the Zinkgruvan Mine in Sweden. Studies of failure modes, local geology and rock mass characteristics were carried out to correlate failure modes to different geomechanical environments. For preliminary design, crude and ready-to-use stress level criteria were extracted from simple linear elastic modelling. More detailed modelling was used to simulate observed failures in a mechanically realistic manner and, at the same time, to help identify the fundamental failure mechanisms. Once the correct models and input parameters were identified, a set of guidelines on choice of model and parameter values were produced. The models can be used for design of new mining areas at Zinkgruvan, and the methodology could also be applied to other mines with similar geomechanical conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.