Abstract

Optoelectronic systems based on space-variant optics give great freedom to the system designer in terms of interconnect topologies. One feature of space-variant systems is that they can achieve a high interconnect density. However, this density is achieved by having large arrays of diffractive elements with very small apertures relative to the propagation distances involved. Thus diffraction losses from the finite apertures can significantly affect power throughput for these types of systems, regardless of the diffractive efficiencies of the optical elements involved. Therefore it is desirable that this loss be minimized. We present several space-variant optical interconnect design methods (for both one-to-one and fan-out interconnects) and compare them in terms of power throughput for diffraction-limited interconnect distances. Both numerical simulations and experimental results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.